Appendix D. Field Screening Methods

Field Measurement Type	Method Name (• Example Products)	ľ	Media		Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S 1	W	V						
Immunoassay	SW-846 4030 • EnSys Petro Test System • SDI RaPID Assay	~	✓		Bulk TPH (primarily low- to midrange)	Combination of immunoassay and colorimetry. Methanol extraction. Enzyme conjugate solution and antibody-coated test tube. Color developer solution and H_2O_2 . Differential photometer and m- xylene reference standard.	 Samples can be analyzed quickly on-site Not affected significantly by moisture content or pH 	 Small mass of soil tested Sensitivity depends on the binding of the target analyte to antibodies; kits are most sensitive to small aromatic compounds Non-TPH compounds such as chlordane and toxaphene show cross- reactivity and can cause false positives 	25– >1,000 ppm	https://www.epa.gov/sites/production/files/ 2015-12/documents/4030.pdf
	Hach 10050 • Hach TPH in water and soil	v	✓		Bulk TPH (low- to midrange)	Same as above, except reference standard not specified		• Sensitivity of test influenced by the nature of the hydrocarbon contamination and any degradation processes at the site	20/50/100/200 ppm in soil as diesel 2/5/10/20 ppm in water as diesel	https://www.hach.com/asset- get.download.jsa?id=7639983907
	Modern Water SOP • Modern Water Total BTEX/ TPH RaPID Assay	~	~		Bulk TPH (low- to midrange)	Same as above, except reference standard is BTEX		• Organic and clay-rich soils may limit the effectiveness of soil extraction and may require longer extraction times than other soil types	 Soil: 0.9 -30 ppm as total BTEX standard Water: 0.02-3.0 ppm as total BTEX standard TPH: range varies based on fuel source (see supplier fact 	https://www.modernwater.com/pdf/MW_Fa ctsheet_Rapid-Assay_BTEX_TPH.pdf

¹ S – Soil; W – Water; V - Vapor

Field Measurement Type	Method Name (• Example Products)	Media		Media		Media		Media		Media		Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S W	/ V														
							 Kits contain dangerous goods and/or hazardous materials (methanol, HCl, and N,N'-DMF); shipping and disposal are regulated Generated extract may require hazardous waste disposal Difficulty level of test is moderate to high; need trained personnel 	sheet)									
Colorimetric	Friedel-Crafts method • Hanby TPH Soil Kit • Hanby TPH Water Kit • Chemetrics RemediAid [™] TPH in Soil Test Kit			Bulk TPH (aromatic hydrocar-bons only)	Alkylhalide (e.g., AlCl3, CCl4) extracting agent and reagent react with aromatic hydrocarbon, producing a colored solution. Portable spectrophotometer may help at low concentrations.	Inexpensive	 Chlorinated solvents can cause false positives Organic-rich or clayey soils can cause color interferences Extraction may be difficult with clayey soils 	1-1,000 ppm (soil) 0.01-100 ppm (water)	https://www.epa.gov/ust/expedited-site- assessment-tools-underground-storage- tank-sites-guide-regulators https://envcoglobal.com/files/docs/total- petroleum-hydrocarbons-tph-soil.pdf https://cfpub.epa.gov/si/si_public_record_re port.cfm?dirEntryId=63294								
	• Draeger Hydrocar-bon gas detector tubes		~	Bulk TPH (aromatics)	Glass tubes filled with porous, solid carrier material coated with color reagents; hydrocarbons in the vapor phase react with the reagents.	 Samples can be analyzed quickly on-site Low cost Does not require power 	Detector tubes are compound-specific	2–1,400 ppm	https://www.sensidyne.com/assets/docs/d etector-tubes/datasheets/187S_1.pdf http://www.gasdetectionwarehouse.com/co ntent/Draeger%20Manuals/Draeger%20Tube s%20ManualDatasheet.pdf https://www.gastec.co.jp/files/user/asset/p df/en/detector_tube/105.pdf								

Field Measurement Type	Method Name (• Example Products)	Media		Media		ia	Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S 1	W	V								
	Oleophilic Dyes • Cheiron OilScreenSoil • KolorKut Oil- Finding Paste	~			NAPL	Soil and oil-free water added to vial containing oleophilic dye and an expandable polystyrene bead; hydrocarbons released from the soil and associated dye attach to the bead to change the bead from white to red or blue; hydrocarbon may form a separate phase, colored layer.	 Quick analysis on- site Low cost Results can be assessed in terms of "saturated," "positive," "slightly positive" and "undetected" 	 For small masses of soil, may not be practical for multi-increment samples Not applicable for gasoline (only) contaminated sites, heavy crude oils (bunker C), or bituminous materials like asphalt or waxes Mineral oil and motor oils may be detectable, but detergents in some synthetic oils can interfere with color development of kits 	> 500 ppm	http://www.maine.gov/dep/spills/petroleum /documents/sop/ts004.pdf		
Turbidimetric	SW-846 9074 • Dexsil PetroFLAG	*			Bulk TPH (mid- to high- range); good complementary method to immune-assay or other test sensitive to aromatic hydrocarbons	Methanol extraction Aqueous emulsifier development solution Hydrocarbons precipitate out and become suspended in solution	 Samples can be analyzed quickly on-site Low cost (after initial purchase of kit-specific turbidimeter that can only be used for this method) Most do not require power 	 Small mass of soil tested Organic-rich soils can cause a positive interference as naturally occurring compounds become suspended in solution and/or cause a negative interference due to a reduced effectiveness of the extraction Extraction may be difficult with clayey soils Low bias at higher moisture content 	10-2,000 ppm	https://www.epa.gov/sites/production/files/ 2015-12/documents/9074.pdf		

Field Measurement Type	Method Name (• Example Products)	Media		ia	Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S 1	W	V						
lonization	Headspace analyses: SW-846	 ✓ 	✓		Total organic vanor (includes	A soil or groundwater sample	• Samples can be	Temperature effect on the suspension; important to recalibrate if temperatures change more than 10 °C Kit contains methanol Generated extract may require hazardous waste disposal Relies on VOCs partitioning from NAPI	1–1,000 ppm	https://www.epa.gov/sites/production/files/ 2014-03/documents/esa-ch6.pdf
	 Inaryses: 3W-640 USEPA 3815 or Bag Headspace Test according to Maine DEP (MEDEP)2012 PID (e.g., MiniRAE) FID 				TPH partitioned to the vapor phase; at room temperature according to Henry's law or using heated probe) Com-pounds detected depend on lamp	is placed in an airtight container, typically a glass jar or polyethylene bag, leaving one-half to one-third empty (NOTE: Maine requires a double layer of strong metalized polyester and low-density polyethylene (3 mil)) The container	 on-site (2-10 minutes) Very low cost (excluding cost of instrumentation) Can be used with field GC in connection with a membrane interface probe 	and water phases, which is sensitive to soil type, moisture, temperature, and time to analysis. A standard method (such as headspace) should be used to manage variables. • PID not very sensitive to aliphatic hydrocarbons (ca. an order of		https://www.epa.gov/ust/expedited-site- assessment-tools-underground-storage- tank-sites-guide-regulators https://www.epa.gov/sites/production/files/ 2015-12/documents/3815.pdf
					and ionization energy; total (aromatic) volatile organic vapor (from TPH partitioned to the vapor phase)	is then shaken, heated, or left to sit for a period of time to allow the hydrocarbons to partition into the headspace (i.e., the air space above the sample). The headspace is then measured with an FID or PID. Ultraviolet lamp (PID) or hydrogen		 magnitude lower than halogenated or aromatic hydrocarbons); includes all volatiles detectable with PID, not just TPH- related compounds. FID more responsive to aliphatic hydrocarbons FID requires special shipping and handling, as well as ultrapure hydrogen for calibration 		http://www.maine.gov/dep/spills/petroleum /documents/sop/ts004.pdf

Field Measurement Type	Method Name (• Example Products)	Media		Media			Media			Media			Media			Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S 1	W	V																	
Infrared Spectrophotometry	Ex-situ	×			Mid- to high- range hydrocarbons (C10–C36, depends on	flame (FID) ionizes organic vapors. The detector reads the electrical current generated by the ionized compounds. Hydrocarbons are extracted using S316 (proprietary). IR radiation will be absorbed by the	• Solvent extract does not generate hazardous waste	 Small mass of soil tested (e.g., 5 grams) The type of volatile organics at the site must be known in advance and must be detectable by the PID. False positives may occur if the PID is exposed to motor vehicle exhaust, solvents used for decontamination, or other sources of volatiles. Soil analysis subject to extraction Requires field lab-not a rugged portable 	1–1,000 ppm	http://nepis.epa.gov/Exe/ZyPURL.cgi?Docke y=P10048Z6.TXT											
	350				calibration standard) with greater response to aliphatics	hydrocarbons in the extract.		Requires specialized training and wet chemistry skills		http://www.horiba.com/uploads/media/HRE 1886E.pdf											
	In situ/Ex situ • Ziltek REMScan					Direct soil measurement, no extraction. Uses flat, compacted, dry surface. Measures soil surface only.	 Rapid, high-quality data (15 seconds for in situ reading) No consumables (chemicals) required except for batteries 	 Non-TPH compounds such as terpenes and eucalyptus (and all organics containing aliphatic C-H bonds) can cause false positives Sensitive to soil porosity and soil moisture; may require drying samples prior to analysis 	100–100,000 ppm	https://www.epa.gov/sites/production/files/ 2014-03/documents/esa-ch6.pdf											

Field Measurement Type	Method Name (• Example Products)		Medi	ia	Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S 1	W	V						
Ultraviolet Fluorescence Spectrophotometry	Ex situ	×			Polyaromatic hydrocarbons (range depends	Methanol extraction, filter then dilute. UV light beamed	• Not sensitive to humidity	 Requires specialized training and/or hiring professionals to employ Must create a site- specific calibration standard High cost for purchase (rental may be a more affordable option for limited use); rough order of magnitude purchase/maintenance costs are comparable to lab instrumentation (GC, MS, HPLC, etc.) Suggested specialized training and/or hiring professionals 	0.1- >1,000 ppm	http://nepis.epa.gov/Exe/ZyPURL.cgi?Docke y=P10048Z6.TXT
	• Sitelab UVF 3100 (254 nm) or TD-500D (365 nm)				wavelength)	Wavelength of detected light indicates aromatic concentration.		 Soil analysis subject to methanol extraction High purchase and calibration price Requires field lab-not a rugged portable instrument 		
	In situ • Dakota UVOST (308 nm) • Geoprobe Optical Image Profiler	✓				Direct push probe. Laser-induced fluorescence detects NAPL. Which compounds fluoresce depends on wavelength of laser.	 Rapid, high-quality data with vertical profiles allow for 3D visual of impacts Not sensitive to humidity 	 Best used in situ with a drill rig Requires specialized training and/or hiring professionals to employ Only identifies NAPL; no dissolved phase 	200–10,000 ppm	

Field Measurement Type	Method Name (• Example Products)	Media		ia	Analyte	Overview	Advantages	Limitations	Quantification	Reference
		S 1	W	V						
Fiber Optic Chemical Sensor	• PetroSense PHA-100		✓	✓	Bulk TPH (greater response to aromatics and BTEX)	Light travels along fiber and is refracted along the fiber cladding. The cladding coating adsorbs hydrocarbons, which changes the refraction angle, and changes transmitted light.	 Quick, easy analysis No waste generated from the analysis Not sensitive to turbidity or humidity Sensors can be calibrated to site- specific compounds 	 Response depends on compound calibration Probe must be kept clean for accurate readings Trichloroethylene (TCE) and perchloroethylene (PCE) can cause false positives 	1- >1,000 ppm (water) 5-10,000 ppm (air)	http://petrosense.com/pdf/PetroSense_Pro duced_Water_Monitoring.pdf